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Space ROS is an open-source spacecraft flight software framework for developing robotic
applications for space being developed by NASA, Open Robotics, Blue Origin, and others. It
is designed to be platform independent, portable and project independent. Space ROS is a
fork of the ROS 2 framework and conforms to the ROS 2 Application Programming Interface
(API) that has been hardened to be compatible with the demands of safety-critical space
robotics applications. The intent of Space ROS is to provide a robust framework for space
robotic applications where ROS 2 applications can be reused with little to no modification
enabling the space community to take advantage of the innovation of the ROS community.
This will shorten the time for development of novel space robotics capabilities, enable reuse of
capabilities between missions, and lower the life-cycle cost of new robotic missions. This paper
details the objectives of Space ROS, the motivation for its creation, the approach for its
development and validation, as well as initial benchmarking results.

I. Nomenclature

ROS2 = Robot Operating System

NPR = NASA Procedural Requirements
DRA = Design Reference Application
ARC = Ames Research Center

GSFC = Goddard Space Flight Center
DSA = Distributed Space Autonomy

II. Introduction

ROS has enabled unprecedented open-source collaboration on the development of robotics capabilities and
collaboration between academic, commercial, and government developers. The original ROS implementation had



drawbacks in architecture and implementation that made it a challenge to use for demanding and rigorous applications.
Open Robotics and the ROS community have worked to address these issues with the development of ROS2. Space
ROS is a collaboration between NASA, Open Robotics, Blue Origin, and others that seeks to expand the capabilities
of ROS2 into a framework that could be deployed for safety-critical applications in space and leverage the innovation
from the academic, commercial, and government robotic communities to meet future opportunities and challenges in
space robotics. The technical advancement of the reusable Space ROS framework and its availability to the space
industry has the potential to greatly reduce the life cycle costs of space-qualified robots. The Space ROS framework
seeks to support a variety of robotic systems including rovers, autonomous spacecraft, dexterous manipulators,
humanoid robots, and multi-robot systems.

III. Space ROS
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Figure 1: Space ROS Roadmap and Objectives

A. Space ROS Objectives
The Space ROS team is working to develop a certifiable and reusable robotic framework to meet the needs of

future space-based robotics applications. This will support many future robotics capabilities and missions as shown in
Figure 1. A certifiable system is designed to be aligned with flight software standards, focusing on the NASA NPR
7150.2 as a baseline and so that the framework could be demonstrated to meet or exceed the requirements for use on
a Class A Mission as defined by the NASA NPR [1]. This includes addressing: 1) Memory Safety; 2) Deterministic
Performance; 3) Static analysis; 4) System Testing and Evaluation. We plan to develop a fork of ROS 2 and address
these challenges while maintaining compatibility with the ROS 2 API and enabling ROS 2 applications to be reused
on Space ROS with little to no modification enabling the space community to take advantage of the development and
innovation of the larger ROS community. The resulting framework will support characteristic space robotics
applications while enabling the rapid development of new robotic capabilities and the reuse of capabilities between
missions. The Space ROS framework is highly aligned with NASA’s published Technology Taxonomy Areas [2], as
shown in



Figure 2, demonstrating the need for such a framework to support future space endeavors. Space ROS will provide
enabling capabilities addressing needs in Robotics, Autonomy, Guidance, Navigation, and controls as well as
supporting technologies like simulation and software modeling.
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Figure 2: NASA Technology Taxonomy Areas Addressed with Space ROS



Current mission concepts are using ROS2 as part of their
development cycle, such as the Regolith Advanced Surface
Systems Operations Robot (RASSOR) project, shown in
Figure 3. This generally follows a pattern of implementing a
robotic platform using ROS2 for control and as a test bed for
algorithmic development and them transitioning the
algorithms, once developed and proven effective, to a flight
certified software platform such as NASA’s cFS once.
Developing in ROS2 allows for developers to quickly
implement their system leveraging the power of the ROS
development community and all the previous development
work that has been open sourced. Space ROS would enable
missions to deploy FSW for missions withou‘t havi.ng to Figure 3: NASA RASSOR that uses ROS2 for
perform the second step of converting the algorithms into a evelopment
second framework, reducing cost and development time.

B. Design Reference Applications

To guide the development of Space ROS we have defined a set of Design Reference Applications (DRAs). These
are designed to serve as an early assessment of existing (and missing) ROS features for space applications. They will
also help identify the driving attributes of Space ROS to achieve “typical” / projected space robotic systems. These
DRAs, shown in Figure 4, include Cargo Offloading, Resource Prospecting, Site Preparation, and Orbital Station
Unpressurized Robotics. To help guide the development of Space ROS we worked to define a basic description for
each DRA, identified and explored their key robotic components and identified technical attributes that a robotic
infrastructure supporting that DRA needs to accommodate. The following technical attributes were identified for
focus: Perception, Planning, Mobility, Manipulation, Control and Coordination, and Communications. The
descriptions as well as a detailed listing of the technical attributes are described below.
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Figure 4: Space ROS Design Reference Applications



1. Cargo Offloading

A robotic crane system on a lander lifting, translating, and depositing cargo from lander deck to surface with

mission control in the loop

2. Resource Prospecting

A mobile robotic resource prospector with instruments and a drill performing a survey to characterize regions for
amenability for later resource extraction with a data relay and semi-autonomous control

3. Site Preparation

A team of robotic regolith movers and assemblers performing terrain preparation and foundational construction in

support of advanced surface operations with remote Earth based supervision

4. Orbital Station Unpressurized Robotics

An external (unpressurized) service robot tasked with operations involving station components and visiting

vehicles in support of an orbital space station with local crew member operation

Table 1: Summary of Technical Attributes of Space ROS DRAs

Cargo Resource Prospectin Site Orbital Station
Offloading P g Preparation Unpressurized Robotics

e Payload location o Natural terrain o Site o Proprioception (self-
e Lander structure characterization characterization, configuration)

perception (traversability) in low light including terrain e Obstacle detection (module hulls,
e Surface (lunar) volumetric visiting vehicles, external

. characterization e Detection of suitable drive assessments payloads and equipment,
Perception paths and sampling sites o Terrain mechanical astronauts)
e Novel feature/signal resistance, mass ®  Force/moment detection
detection o Other .robot (contact)
detection

®Manipulator o Traversal planning e Robot team-based o Arm trajectory planning

trajectory planning considering remote sensing excavation, e Task planning

e Payload surface
placement planning

Planning

(resource maps), lighting,
communications

o Activity planning
considering battery state of
charge, intended activities
and resource costs

deposition and
leveling planning

e Local route
planning

o Activity planning
considering battery
state of charge,
intended activities
and resource costs

None e Control under rover e Control under rover | eControl under arm kinematics,
kinematics and surface kinematics and base contact and payload mass
terramechanics significant surface properties

o Terrain obstacle avoidance interactions o Station obstacle avoidance
Mobility e Instrument, manipulator e Terrain obstacle
and/or drill placement avoidance
®Tool / manipulator

placement and

control under

motion

e Payload grapple e Possible active regolith o Positing and o Closed-chain grappling/initial

Manipulation

interaction (scooping,
scraping)

assembly of sit
elements

contact, ungrappling




Control and
Coordination

Communications

e Payload translation
under gravity and
dynamics

e Payload surface
placement amongst
terrain features

o Drilling / subsurface access

e Possible active
regolith interaction
(scooping, scraping)

o Free-flyer grappling/initial
contact, release

e Maneuvering “payloads” under
arm kinematics and joint
payload/station/arm contact
avoidance, force and torque limits

e Emergency halt in face of
unexpected contact or resistance

e Earth-based human
supervision

e Interleaved lander
and robotics tasks
(e.g. payload
umbilical and
mechanical release)

e Possible payload
health monitoring
before/during/after
crane operation

e Earth-based human
supervision

eRover, instrument,
manipulator and/or drill
coordinated control

eRobot team
coordination (loose
and potentially tight
coordination)

e Earth-based human
supervision

e Earth-based human supervision

e Interleaved lander and robotics
tasks (e.g. payload umbilical and
mechanical release)

e Possible payload health
monitoring before/during/after
crane operation

o Crane-Lander:
hardline (serial,
Ethernet)

e Payload-Lander:
hardline (via
severable umbilical)

e Lander-Mission
Control: RF

o Prospector-Instruments:
hardline (serial, Ethernet)

o Prospector-Drill: hardline
(serial, Ethernet)

o Prospector-Mission
Control: RF (direct-to-
Earth)

o Prospector-Comm Relay:
RF

o Comm Relay-Mission
Control: RF

e Robot-Robot: RF /
WiFi

e Robot-Mission
Control: RF

o Station-Manipulator: hardline

o Station-Visiting Vehicle: RF
and/or hardline (state-dependent)

o Station-Crew Workstation:
hardline

o Station-ORU: hardline (via
standard quick connect/disconnect
interface)

C. Community Input
To gauge the community interest in Space ROS and guide its development. The Space ROS team we solicited

feedback on the Space ROS concept from the space robotics and autonomy community through a NASA RFI.
Responses were received from 30 companies, universities, and individuals from many different countries as shown in

Figure 5.
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Figure S: Space ROS RFI Respondent Demographic Summary

Based on the responses to this here is significant interest in a version of ROS2 that can support space systems and

robotics. Some key take aways were:

e  Operating in a resource constrained environment is critical
e Interactions with embeded systems is a concern for many respondents



e  Security is important to organizations working with the DoD
e Documentation and examples are a key to adoption
e A significant portion of respondents are interested in supporting the development community

To augment the technical attributes from the DSAs and guide future Space ROS development the team also
requested feedback from industry on their use of ROS/ROS2, their efforts developing robotic systems, and future
objectives for those systems. We then anonymized this data and generated statistics based on the responses which are
summarized in Figure 6.
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Figure 6: RFI Statistics on Technical Parameters for Robotic Systems



IV. Implementation

A. Safety Approach
The intent of the Space ROS software development effort is to build a workflow that aligns with established safety-

critical software standards such as NASA NPR 7150.2 and DO-178C. This will not include flight certification for a
particular class of mission but updates to the framework and surrounding process that would accelerate that
certification if Space ROS was selected as part of a future mission solution. The current Space ROS framework
includes updates to the ROS2 codebase to improve the memory safety and infrastructure tools that support, continuous
integration and artifact / document generation for supporting software qualification activities. Finally, plans for
Verification and Validation (V&V) have been developed based on previous NASA V&YV efforts to lay the groundwork
for future development and potential certification efforts.

1. ROS2 Safety Updates
The major update that is required to align ROS2 with safety critical software standards is to improve the memory

handling. This was achieved in Space ROS by leveraging a memory pool developed using the polymorphic allocator
introduced in the C++ 17 Standard. [3] This allows for an initial allocation of memory that can be used by what would
have previously been dynamic memory allocations in the standard ROS2 implementation. This allocation technique
currently doesn’t apply to the communications middleware, however the ROS2 middleware interface allows for
significant middleware modification without impacting the client applications and the ePromisa Fast DDS library that
is used as the default ROS2 middleware implementation can be configured to memory preallocation. [4] [5]

2. Infrastructure and Tooling
Open-source efforts like ROS2 have the potential to produce incredibly powerful tools, but there is generally a

significant discrepancy between the level of planning and documentation produced and what is expected for safety
critical flight qualified software. Therefore, one of the key efforts of the Space ROS effort has been developing the
infrastructure and tooling to support development. The objective for the system’s pipeline for development is shown
in Figure 7. The current version of this pipeline and the surrounding infrastructure that is currently deployed on the
Space ROS GitHub repository. This design largely follows the best practices of open source development with
additional focus on software requirements and static analysis described in the following paragraphs.

AUTOMATED
RECUREMENTS [€— = = = = = = - USER FEEDBACK [l— = = = = — — = ACCEPTANCE
TESTING
CODING RULES
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Figure 7: Target Development and Continuous Integration Pipeline for Space ROS




Requirements management in aerospace software development is typically a highly managed process using a strict
process and proprietary tools. Requirements for flight software systems must be highly detailed, with multiple levels
describing abstract needs to detailed software behavior. This detail is used to support the system V&V and certification
so traceability between the requirements and software codebase is frequently desired. In comparison open source
development rarely has strictly maintained formal requirements and those that are generated frequently become out of
date. The processes of developing and maintaining requirements is often considered “heavyweight” and because open
source efforts rely on soliciting contributions from the community processes that make contributing more cumbersome
are frequently counterproductive. Additionally, processes that require property software that is frequently expensive
and opaque is largely incompatible with open source.

To address these challenges the Space ROS has worked to develop a requirements management process that
balances the need for requirements management with the ease of maintenance and contribution while maintaining
compatibility with open source tools. The resulting process, illustrated in Figure 8, leverages two open source
requirements management tools Doorstop and FRET. Doorstop is a tool for managing requirements and traceability
in a Git based workflow. [6] FRET, or the Formal Requirements Elicitation Tool, was developed by NASA Ames
Research Center to define well-structured and testable requirements using a restricted set of natural language, named
FRETISH. [7] Doorstop allows users to generate and submit requirements to the Space ROS Git repositories that can
be reviewed and accepted via pull requests. It also allows for the generation or reports for requirements traceability.
The requirements managed by Doorstop can then be synchronized with FRET using tooling developed by the Space
ROS team. FRET allows for the validation of requirements that are written in FRETISH to be validated and for the
generation of source code tests based on those requirements. These tests can then be added to Space ROS applications
to enable real time verification of software performance.
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Figure 8: Space ROS Git Based Requirements Workflow using FRET and Doorstop

To help bring the Space ROS codebase and the code for desired packages in line with the appropriate standards
the Space ROS team has implemented a static analysis stage into the build system. Static analysis increases code
quality by identifying potential errors and provides artifacts related to code coverage and modified condition/decision
coverage (MC/DC) testing supporting V&V efforts. Currently two open source static analysis tools developed by
NASA have been implemented: Cobra that was originally developed for JPL and IKOS (Inference Kernel for Open
Static Analyzers) originally developed by ARC. [8] [9] Cobra provides static analysis capability that works well for

10



large code bases with fast analysis of general code patterns, common coding flaws, or coding rule compliance. IKOS
is a static analysis framework, based on the Theory of Abstract Interpretation, that utilizes LLVM for detecting and
proving the absence of runtime errors in C and C++ programs.

Both tools have the capability to output the results of their static analysis tools generate SARIF output, A JSON-
based exchange format for the output of static analysis tools. [10] The team has added a filtering capability to avoid
duplicate issues for the analysis that result from combining multiple static analysis tools. Currently, the system is
capable of removing identical issues, and adding the capability to remove semantic equivalent warnings and errors is
on the roadmap. In order to improve the developer experience working with the results of the static analysis tools the
team has developed the Space ROS Dashboard and SARIF viewer. [11] This extension, a screenshot of which can be
seen in Figure 9, provides insight into static analysis, code coverage, build status, issue burndown.
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Figure 9: Space ROS SARIF Result Dashboard

3. Additional Verification and Validation Planning
In addition to all the tooling described above the Space ROS team has worked to develop a set of V&V plans that

will be released for Space ROS. The objective of these plans is to lay out a path for the further development of
requirements, testing and validation for Space ROS to streamline the certification process for Space ROS if it was
selected as the infrastructure for a future mission. The certification process is time consuming and requires significant
investment from a mission. These preexisting plans should lower the barrier to selecting Space ROS for missions that
are considering options for space based robotic operations.

B. Demonstrations
The Space ROS team has developed an initial set of demonstrations for Space ROS that are available in the Space

ROS GitHub repository. [12] These demonstrations correspond to the Orbital Station Unpressurized Robotics and
Resource Prospecting DRAs. These demonstrations illustrate Space ROS and ROS2 compatible packages being used
for space robotics applications and illustrates the compatibility with traditional ROS tooling such as Gazebo. [13]
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Figure 10: Space ROS Demos based on the Orbital Station Unpressurized Robotics and Resource
Prospecting DRAs with Canada Arm and Perseverance as Demonstration Platforms

V. Benchmarking

A. Benchmarking Scope

To quantify the performance of Space ROS when applied to more complex tests that
are representative of full space-relevant mission applications Space ROS has been
deployed on the Distributed Spacecraft Autonomy (DSA) testbed for scalability testing
and benchmarking at ARC. This testbed, shown in Figure 11 is made up of multiple
networked units of flight-like platforms such as the Unibap iX5-100, the Diligent
ZedBoard (a development platform for the Zynq 7020 which is used in flight processors
such as the Xiphos Q7), and the NVIDA Jetson TX2. An existing code base that will
be deployed as part of a DSA experiment on the upcoming NASA Starling mission was
selected as a starting point for this benchmarking effort. The Starling mission is a swarm
of four spacecraft that are sharing data to compute Total Electron Count (TEC) statistics
from GPS data, making it a characteristic space-based distributed processing challenge
for implementation with Space ROS. [14]

The DSA applications were originally implemented using NASA’s cFS as a
software framework and RTI’s Connext DDS Micro for communications and designed
to test the scalability of distributed networking in space by taking TEC data, sharing it
between spacecraft through a Comm Application, and combining the data in an
Autonomy application that generates plans form monitoring GPS performance. The
data flow for the DSA applications is shown in Figure 12. [15] The Space ROS
implementation of the system is substantially simpler because it can utilize the built in
DDS functionality of Space ROS and consequently doesn’t require a Comm app. We
plan to characterize the performance parameters described in Table 2. Sample results
showing memory and CPU usage from the benchmarking are shown in Figure 13 and
Figure 14.
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Figure 12: Data Flow for the Distribute Space Autonomy Applications

Table 2: Summary of DSA Metrics to be Collected for Benchmarking

Fuse Local | Formation-modified I ging Optimal
rrerererer —Tewargvaes P
Data and Other S/IC N Channel
Other Satellite Local
Reward Reward
Comm App | Values Values
PR =
Subscribe to Publish local
other spacecraft spacecraft
rewards rewards

Test Description Metric Recorded Metric Details

Deployed Application Size

DSA Apps + Space ROS Compiled File Size

CPU Utilization

Space ROS CPU Utilization, max, min, mean, variance

Message passing tests using but a
Memory Usage

fully connected and linear mesh Space ROS Memory Utilization, max, min, mean, variance

network with: Topic Latency

min, mean, variance
Ideal, 10% loss, 50% loss, and 90%

Inter Container Latency

loss, 100 ms latency and 500 ms Latency between AUTO nodes Auto Sat State Message

latency network configurations Inter Container Packet Loss

Total State Messages Ignored

Number of AUTO Sat State Messages not received.

Latency between nodes reward and assignment messages, max,

When a message is delayed to long it is just ignored so this

combined both dropped packets and ones whose latency was too

large.
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Figure 13: Memory Usage in Bytes of Space ROS Benchmarking Node
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Figure 14: CPU Usage in Hz of Space ROS Benchmarking Node

We are also working to develop an open source community benchmark. The objective of this benchmark will be
to answer the questions “Will Space ROS run on my processor?” and “How will Space ROS perform form my
application?”. We plan to publish this benchmark and the tolling to run it and publish the results to the Space ROS
GitHub repository. The Space ROS team will solicit and aggregate benchmarking tests from the community and
publish the results on the Space ROS website.

VI. Conclusion

A. Summary
Space ROS will provide an open-source reliable and reusable software framework for the development of new

space robotic applications. Adoption of this framework will accelerate the development and deployment of new
robotic applications for space and reduce the full life-cycle costs of future robotic systems. The Space ROS team has
made substantial progress in enhancing ROS2 to build an initial version of Space ROS that is now publicly available.
This includes new features such as enhanced memory safety, new tooling for requirements management and static
analysis, and demonstrations of the system applied to characteristic applications. We have provided initial
benchmarking data that we will seek to expand in the coming months.

B. Space ROS Community Outreach
The Space ROS team is working with Open Robotics to develop community standards and governance guidelines

to allow for more members of the space robotics and flight software communities to get involved with the project. If
you are interested in being involved, please reach out to the authors. If you are interested in contributing, we have
open sourced the code and will be accepting pull requests.
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